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Abstract

In orchestrating the wound healing process, the immune system plays a critical role.

Hence, controlling the immune system to repair skin defects is an attractive

approach. The highly complex immune system includes the coordinated actions of

several immune cells, which can produce various inflammatory and antiinflammatory

cytokines and affect the healing of skin wounds. This process can be optimized using

biomaterials, bioactive molecules, and cell delivery. The present review discusses var-

ious immunomodulation strategies for supporting the healing of chronic wounds. In

this regard, following the evolution of the immune system and its role in the wound

healing mechanism, the interaction between the extracellular mechanism and

immune cells for acceleration wound healing will be firstly investigated. Conse-

quently, the immune-based chronic wounds will be briefly examined and the mecha-

nism of progression, and conventional methods of their treatment are evaluated. In

the following, various biomaterials-based immunomodulation strategies are intro-

duced to stimulate and control the immune system to treat and regenerate skin

defects. Other effective methods of controlling the immune system in wound healing

which is the release of bioactive agents (such as antiinflammatory, antigens, and

immunomodulators) and stem cell therapy at the site of injury are reviewed.
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1 | INTRODUCTION

Skin is the largest organ of the human body and is the first human

defense barrier against pathogenic, physical, chemical, and mechanical

attacks.1 It is regularly subjected to several chronic damages, including

trauma, autoimmune skin diseases, burns, skin cancer, and diabetic

ulcers.2,3 Also, skin plays a unique role in body immunomodulation. It

is one of the most active organs in immunology due to various types

of immune cells.4,5 Skin defects, called chronic wounds, fail to pro-

gress beyond the inflammatory phase and lead to immune system

stimulation for a long time.6 According to the World Health Organiza-

tion (WHO) report, chronic wounds affect 6.5 million people in the

United States, leading to the US $25 billion in annual treatment

costs.7 Therefore, the development of effective strategies to acceler-

ate chronic wound healing is desired.

The immune system is a key player throughout the wound healing

process via secreting signaling molecules such as cytokines,

chemokines, and growth factors.8,9 Consequently, to enhance the

healing process of chronic wounds, management of the immune sys-

tem response is necessary. It can be possible by identifying the

immune mechanism in the skin, examining the cells involved in the tis-

sue formation and repair process, and studying the interaction

between the cells and the extracellular matrix (ECM). Recent studies

have shown that ECM properties play a significant role in the regula-

tion and function of the immune system.10,11 ECM contains bioactive

components, which make a range of cellular activities easier.12 The
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interaction between cells and their environment allows the ECM a

dynamic homeostatic control bond essential for immune cells to func-

tion well.13 Furthermore, ECM compositions consist of natural immu-

nomodulatory domains which link to receptors on immune cells,

supporting their adhesion and regulating their functions.11 According

to the key parameters to control the immune system, various strate-

gies have been examined for chronic wound healing, which can be fur-

ther divided into biomaterials-based strategies,14 the release of

immunomodulators and antigens,15–20 and cell therapy.21,22 Recently,

limited review studies have focused on various immune-based strate-

gies to control chronic wound healings.23 Sheoran et al7 overviewed

the recent immune system mechanism for skin wound healing. The

aim of that study was to accurately consider the pathophysiology of

both acute and chronic wounds and study the role of the immune sys-

tem to accelerate chronic wound closure. In another review, Synder

et al24 studied the role of immune cells in wound healing. They sum-

marized studies on the function and interaction of macrophages for

wound healing. Park et al25 also evaluated the interaction of some

biomaterials with immune cells such as dendritic cells (DCs). Based on

this study, biomaterial-based approaches can be practical tools for

manipulating the immune system in order to deliver a range of immu-

notherapy agents at the right time and place.25 In another study, Cho-

uhan et al26 studied the new technologies for healing and

regenerating skin wounds that explored the advantages and draw-

backs of these methods. Another review article by Andrew et al11

examined the interaction between the immune system and the ECM.

The approaches have provided a wide variety of engineering strate-

gies for immunomodulation based on material interactions.11 Ben-Ami

et al27 overviewed the functions of mesenchymal stem cells and their

potential for the immunomodulatory treatment of autoimmune dis-

eases. Loubna et al28 also reviewed skin immunomodulation during

regeneration and highlighted the role of adipose derived stem cells

(ADSCs) in immunomodulatory responses and skin regeneration. In

another review, Ghislain et al29 examined the effect of cytokines,

chemokines, matrix metalloproteinases (MMPs), and other biological

factors on skin immune function. Despite all review studies in the field

of immunology and treatment of chronic skin wounds, there is no

complete study in the field of skin immune components, skin diseases

related to the immune system, and techniques of treatment by using

biomaterials, bioactive agents, and cell therapy. Based on our knowl-

edge, the challenge of previous review articles is to study one face of

practical immunomodulation factors and strategies in treating wounds

and immune-related skin issues.

The key focus of the present review is to overview various

immunomodulation-based technologies to promote the healing of var-

ious chronic wounds. In this regard, following the evolution of the

immune system and its role in the wound healing mechanism,

the interaction between ECM and immune cells to accelerate wound

healing will be investigated. Consequently, the immune-based chronic

wounds, including autoimmune diseases, diabetic wounds, and skin

cancer, will be briefly examined, focusing on the mechanism of pro-

gression and their conventional treatment methods. Finally, various

immunomodulation-based strategies (e.g., biomaterials-based

immunomodulation, the release of bioactive molecules, and cell-based

therapy) to stimulate and control the immune system in the regenera-

tion of skin defects are investigated.

2 | SKIN IMMUNE SYSTEM

The skin tissue is divided into two general parts: the epidermis and

dermal region with the subcutaneous adipose tissue.30 Both of them

have innate immune and adaptive immune cells and play essential

roles in skin regeneration, balance the pre-inflammator, and anti-

inflammatory stages and control the wound healing.7,31 On the other

hand, the dynamic structure of ECM controls the function of cells and

cellular signals.13 This section examines the effect of target cells on

immune functions, the mechanism of the immune system to repair

damaged tissue, and the interaction between the immune system

and ECM.

2.1 | Target immune cells in the skin

Several cells are involved in the skin's immunomodulation reactions,

including neutrophils, macrophages, keratinocytes, T-cells, Langerhans

cells (LCs), and so on.19 Figure 1 schematically shows the status of

cells involved in the immune system in the skin layers. Neutrophils are

the primary immune cells, participating in the wound healing pro-

cess.32 While the central function of neutrophils is to regulate body's

homeostasis by over-proliferation, due to severe inflammation, they

are a barrier to wound healing.33 Macrophages are other important

immune cells in the skin. These cells have a critical role in debridement

and increase the proliferation of fibroblast.34On the other site,

keratinocytes are the most abundant cells in the skin epidermis, which

act a structural and modulating role in the skin's immune system.19

These cells can secrete cytokines and chemokines that affect the pro-

inflammatory process of the microenvironment and lead to the attract

cells such as T-cells and neutrophils.35 T-cells present in both the epi-

dermis and dermis layers of the skin, and the number of these cells in

the skin is twice that of blood. The function of these cells is to modu-

late the skin's adaptive immune system. Moreover, they usually play a

significant role in autoimmune skin problems or allergic cases.36 LCs

are among the primary antigen present cells (APC) in the epidermis.37

With the same function as keratinocytes, these cells can maintain the

pro-inflammatory process in the tissue by secreting inflammatory

agents and expressing specific cellular receptors and are effective in

the skin's immune system.38

2.2 | Function of the immune system in chronic
skin wound healing

Wound healing is a dynamic process divided into three phases, hemo-

stasis/inflammation, proliferation, and maturation, which occur

approximately 0–5, 5–10, and 10–60 days of wound healing process,
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respectively.39 The most important factor influencing the wound

healing process is the function of immune cells. According to cells

actions, they can accelerate wound healing or prevent repair.40,41 For

example, the proliferation of neutrophils in the skin tissue leads to

increased reactive oxygen species (ROS) and destruction of the ECM

and the other cell membranes.7 Figure 2 shows the effects of inflam-

matory immune cells on the chronic wound healing process. At the

first phase of chronic wounds healing (inflammation), the number of

F IGURE 1 Skin cells which involve in immunomodulation and the location of each kind of cells in the skin layers

F IGURE 2 A high number of inflammatory cells in chronic wounds, and the secretion of inflammatory agents such as MMP, ROS, and IL-1,
leads to the loss of growth factors and ECM and, change the function of macrophages
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innate immune cells, such as macrophages, neutrophils, and mono-

cytes, increases, leading to overactivation of ROS and damaging cells

and ECM molecules, or enhanced expression of matrix

metalloproteinases (MMPs) at the injury site.42 Increasing the amount

MMPs also results in the degradation of ECM growth factors and

structural proteins applied for tissue repair.43 During the chronic

wound healing process, an imbalance between pro-inflammatory and

anti-inflammatory signals disrupts the wound healing process.31 In this

phase, the macrophage polarization from pro-inflammatory to anti-

inflammatory is also one of the main factors affecting wound

healing.44 In this regard, the control of cell–matrix interactions and

inflammatory responses are necessary for the complete inflammation

stage in wound healing.24

2.3 | Effect of extracellular matrix on
immunomodulation

The ECM is a dynamic structure made of proteins such as laminin,

collagen, fibronectin, and proteoglycans secreted by skin cells

(keratinocytes, fibroblasts, and immune skin cells).13 ECM plays a

fundamental role in coordinating cell signaling and controlling the

function of immune cells.11,13 A slight change in ECM structure and

composition lead to change in the immune cell functions.11 ECM

proteins play essential roles in cell signaling.45 For example, the lami-

nin protein in the ECM structure is necessary to control migration,

adhesion, and proliferation of immune cells. Any change in this pro-

tein enhances the levels of cytokines and MMPs.46 Another ECM

protein is collagen, which can activate the immune receptors and

control the function of immune cells in the skin.47 The immune sys-

tem is a critical point for ECM degradation regulators, synthesis,

assembly, and remodeling. Its mechanism consists of (I) enzyme syn-

thesis for ECM remodeling, (II) cytokine synthesis and growth factors

for ECM synthesis and degradation, and (III) ECM component

synthesis.13

2.3.1 | ECM remodeling enzymes synthesis

Metalloproteases enzymes are secreted by immune cells and then

modify the physical and biochemical ECM characteristics such as acti-

vation of bioactive peptides and releasing the growth factors neces-

sary for remodeling.10

2.3.2 | Cytokines and growth factors synthesis

The immune cells increase the secretion of cytokines (IL-4, IL-13, and

IL-33) and growth factor (TGF-β) by stimulating the synthesis of ECM

components.48 For example, The produce of IL-13 by T-cells alters

the differentiation of fibroblasts to myofibroblasts and increases the

level of collagen synthesis.49

2.3.3 | ECM components synthesis

Immune cells are one of the main factors influencing the secretion of

growth factors and protein components in ECM. These cells increase

the level of proliferation, adhesion, proteoglycan synthesis, and collagen

synthesis.13 Furthermore, ECM consists of natural immunomodulatory

factors which link to immune cells and support their functions.

3 | OVERVIEW OF SKIN DISEASES AND
THEIR CONVENTIONAL THERAPEUTIC
STRATEGIES

Skin damages are divided into epidermal, superficial partial-thickness,

deep partial-thickness, and full-thickness based on the injury depth.50

All skin diseases, except full-thickness wounds, can regenerate by

fibroblasts, keratinocytes, and so on. The main challenge is usually

related to the full-thickness wounds and their proper treatment strat-

egy.51,52 In another category, based on the cause of skin ulcers, skin

wounds can be originated from uncontrolled activity of the immune

system (e.g., autoimmune skin diseases), abnormal metabolic

(e.g., diabetes and skin cancer), or due to external factors (e.g., burns).

In these categories, the immune system causes ulcers or is effective in

the healing process.53,54 Table 1 summarizes various types of skin dis-

eases, their symptoms, and treatment methods. In the following, the

most common skin diseases such as epidermolysis bullosa (EB), dia-

betic ulcers, and skin cancer directly or indirectly affected by the

immune system, are discussed.

3.1 | Epidermolysis bullosa

Blistering is one of the skin reactions to pathogens such as bacterial,

viral infections, trauma, or genetic disorder.99 Among blistering dis-

eases, autoantibodies play essential roles in skin integrity, such as

integrin and skin adhesion molecules.100 On the other hand, specific

antigens against these auto-antibodies change the skin's genetic func-

tion, leading to mutations missing or malfunctioning skin pro-

teins.55,101 EB is one of the genetic skin disorders that leads to

instability in the shape and structure of the skin.102 The leading cause

of EB is defects in structural proteins and cytoskeletons in the skin

and it is associated with long-term blisters and severe skin lesions.75

As the patient gets older, the symptoms become more severe and the

whole body becomes involved in chronic infectious wounds.70,103

Generally, EB is categorized into four different types of EB simplex

(EBS), junctional EB (JEB), dystrophic EB (DEB), and Kindler syn-

drome.75 According to Figure 3, the change in structure and amount

of keratin caused EBS leading to the alteration in the amount of skin

integrin and basement membrane proteins such as laminin. In preva-

lent cases, a significant decrease in collagen type VII leads to DEB.103

Th faced with EB is severely dry, and its surface layer is brittle due to

the separation between two layers of skin epidermis and dermis.
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Various treatment approaches for this autoimmune disease include

collagen and polyurethane dressings for wound healing and cyclo-

sporine, colchicine, plasmapheresis, extracorporeal photo-

chemotherapy, and intravenous gamma globulins.72 However, the

process of these treatments prevents the development of wounds

and cannot affect the synthesis of proteins such as collagen and

lead to complete healing disorder.104 Clinical studies in recent years

have shown that stem cells and gene therapy can also be used to

accelerate the healing process and regenerate structural proteins in

the skin.70 This process could increase the skin's stability and struc-

tural proteins such as collagen type VII and anchoring fibrils in the

skin.14

3.2 | Skin cancer

The most usual class of human malignancies is skin cancer.84

Many skin cancer patients had autoimmune skin diseases in the

past, which enhances the importance of the link between the

immune system and cancer.84 The function of the immune sys-

tem in skin cancer is essential because this system controls

malignant and cancer cells and prevents their proliferation. On

the other hand, increased immune system activity and autoim-

mune diseases such as Lupus erythematosus, dermatomyositis,

and scleroderma can lead to the growth of cancer cells and skin

cancer.83 According to Figure 4, various innate immune cells

[macrophages, DCs, natural killer (NK) cells, and adaptive immune

cells (T and B lymphocytes)] are present in the skin cancer

microenvironment and interact with the cancer cells via direct

contact or chemokine and cytokine signaling.105 Therefore,

immunotherapy for skin cancer has been studied extensively

using the regulation of inflammatory cytokine dose, reducing the

level of immune suppressants, and modulating the adaptive

immune system's T-cell activity.84 Recently, many studies have

been performed in immunotherapy and the treatment of skin

cancer.106 The engineering of ex vivo patient-derived lympho-

cytes injection back into patients is one of these appropriate

techniques. The T-cells' function, which naturally can recognize

TABLE 1 The list of various types of skin diseases related to the immune system, their diagnostically relevant clinical signs, and the first-line
treatments

Skin diseases Main target for autoantibodies Clinical sign Conventional treatments References

Pemphigus group (PV

and PF)

Autoimmune skin

disorder

Desmogleins (DSG) 1 and 3

Mucosal with cutaneous

involvement

Lesions

Painful blisters

Increasing the level of

immunoglobulin1 (Ig1) and

Ig4

Corticosteroids

Azathioprine

Peptide therapy

Increasing the level of Ig2

[55–61]

Bullous pemphigoid

(BP)

Autoimmune skin

disorder

BP180 and 230 antibodies Severe inflammation

Tense blisters

Increasing the level of IgA and

IgE

Gap junction between the skin

layers

Corticosteroids

Oral prednisolone

Azathioprine

Chlorambucil

Dapsone

Methotrexate

Tetracyclines

[55,56,62–
69]

Epidermolysis bullosa

(EB)

Autoimmune skin

disorder

Skin proteins Mechanobullous

Inflammation long-term blisters

Severe skin lesions

Cyclosporine

Colchicine

Plasmapheresis

Intravenous gamma globulins

Wound dressing

Gene delivery

[70–75]

Dermatitis

herpetiformis

Duhring (DH)

Autoimmune skin

disorder

Transglutaminases (TG)

antibodies such as TG2 and

TG3

Inflammation

Painful blisters

Increasing the level of IgA

Increasing neutrophils

Dapsone

Sulfone

Steroids drugs with a gluten-free diet

[76–82]

Skin cancer – Painful lesion

Deformation of the skin

Changing cell function and

level of cytokines

Chemotherapy

Radiation therapy

Immunotherapy

[83–86]

Diabetic wound – Chronic wound Ozone therapy, laser therapy, and

wound dressing

[87–89]

Burn wound – Inflammation wound

Painful wound

Infection

Increasing immune cells

Skin grafting, silver wound dressing,

skin replacements, and amniotic

membranes

Stem-cell-based therapeutic

controlling immune components

[90–98]
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tumor tissue but has lost their function and has been suppressed

by tumor signals, is the basis of this process.107 Although this

method can be effective in treating skin cancer, the genetic

problems in the function of T-cells, lack of control of specific

signals, and cellular interactions during the change of function

may limit its application.108

F IGURE 3 The schematic
presentation of the structural
proteins, skin cytoskeletons in
three groups of EB (EBS, JBS,
and DEB)

F IGURE 4 Main immune cells in skin cancer microenvironment and their antitumor and protumor functions
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3.3 | Diabetic chronic wounds

Diabetes mellitus type II (DM2) is a metabolic disorder which is char-

acterized by hyperglycemia caused by insulin resistance. Cardiovascu-

lar disease, chronic renal failure, peripheral neuropathy, and diabetic

skin wounds or ulcerations are only a few of the co-morbidities linked

to DM2.109 Diabetic skin ulcers are painful wounds without vasculari-

zation, which can lead to amputation or even death of the

patient.110–112 The importance of vascularization and vessel prolifera-

tion in tissue remodeling, as well as the lack of that in diabetic wound

healing, has been highlighted in numerous studies.99 Recent studies

showed, the proliferation of T-cells and B-cells and macrophages are

altered in diabetic patients, leading to imbalance in the innate and

adaptive immune systems.113,114 Changes in the immune system of

these people lead to severe infection and angiogenic problems in the

wound sites which delay wound healing.88,115 Conventional and mod-

ern methods for treating diabetic wounds include ozone and laser

therapies, respectivly.116,117 One way to treat diabetic wounds and

control diabetes is to optimize immune system factors.29,118–120 For

instance, MMPs regulate angiogenesis by activating of proangiogenic

cytokines, including TNF-α and vascular endothelial growth factor

(VEGF) in chronic wound healing.121

4 | WOUND TREATMENT STRATEGIES
BASED ON IMMUNOMODULATION

Due to the limitations and challenges of conventional treatments of

skin diseases, the strategies which can stimulate or control the

immune system have been introduced. Wound treatment methods

based on immune control can be based on various biomaterials, the

release of bioactive molecules, and finally, cell therapy. These

methods are described into the following sections.

4.1 | Immunomodulation using biomaterials

Biomaterials-based wound dressings provide a barrier between the

wound and the external environment, thus preventing infection,

absorbing exudates and promoting tissue remodeling.122–126 In addi-

tion, biomaterials can control or stimulate the immune system

responses by modulating their physical, chemical, mechanical, and sur-

face properties.127–129 The interaction between the immune system

and biomaterials is examined based on chemical groups, surface proper-

ties, and usual biomaterial. A critical surface characteristic of biomate-

rials is represented by chemical functional groups.130 Amino (–NH2),

carboxyl (–COOH), hydroxyl (–OH), methyl (–CH3), and sulfide (–SH)

groups are the most widely explored groups.131 Table 2 summarizes the

most common chemical groups and their role in the immunological

responses. The amino and hydroxyl groups cause the strongest in vivo

immune cell interactions.132 In other words, the anti-inflammatory M2

phenotype is induced by amino groups, while carboxyl groups trigger

the inflammatory M1 macrophage phenotype.133

Interactions between proteins and biomaterial surfaces are asso-

ciated with various essential biological reactions such as immune sys-

tem responses.139 Therefore, controlling the surface properties and

adhesion of proteins can lead to the optimization of immune cell func-

tions.140 Surface roughness, hydrophilicity, and surface charge are

important factors affecting surface interactions with proteins.141,142

For example, recent studies show that by reducing the surface rough-

ness, the adhesion of proteins and immune responses are minimized,

leading to the accelerated healing process.143–145 The shape and size

of biomaterials are also important factors in immunogenicity and

immune responses.146 For example, short rods were more quickly

taken up than longer rods and can induce more prominent levels of

inflammatory signals (IL-1α and TNF-α).147 The shape factor of

biomaterials-based scaffolds and implants can also be important, since

these structures are often too large for engulfment.131 In another

TABLE 2 Biomaterial surface chemistry and their functions

Groups
Surface
charge Hydrophilicity

Interaction
with blood

Interaction with
inflammatory cells

Innate immune
system responses

Adaptive immune
system responses References

–NH2 Positive Hydrophilic Medium High (in vivo) Activation

antiinflammatory

phase

Enhance T-cell activation

and improve the

lymphocyte

proliferation efficiency

[131,133,134]

–COOH Negative Hydrophilic Medium Low Inflammatory/low

inflammatory

Increased activity of T-

cells

[131–
133,135]

–OH Neutral Hydrophilic High High (in vivo) Low

inflammatory

CD8+ T cell proliferation

and stimulation

adaptive immune cell

[131–133]

–CH3 Neutral Hydrophobic Low High Antiinflammatory Without significant

changes

[131–133]

–SH Neutral Hydrophilic Low Low Low inflammatory/

antiinflammatory

Without significant

changes

[136–138]

C–O Neutral Hydrophilic Medium Low Low inflammatory Activation antigen-

presenting cells (APCs)

and T cell-expressed

[131–133]
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study, titanium dioxide with various morphologies (nanoparticles with

a diameter of 7–10 nm or 15–20 nm, and nanotubes with a diameter

of 10–15 nm and a length 70–150 nm) were synthesized and their

interactions with DCs were investigated.148 Results confirmed the

shape dependence across cytokine secretion, ROS production, and

DC maturation. In particular, the nanotubes generally caused the larg-

est immunogenic effects.148 Another critical factor affecting

the immune system is the surface charge of biomaterials. For example,

the negative charge of carboxyl groups in the materials and its interac-

tion with plasma proteins lead to moderate inflammatory reactions

and trigger changes in macrophage functions and T-cells pheno-

types.131,133 Recently, Pan et al134 showed the influential role of sur-

face modification using amino groups in the triblock polymer of

mPEG5k-PAGE15(NH2)-PCL5k(TPCAH). The results demonstrated

the positive charge of the amino groups interacted with negatively

charged proteins such as ovalbumin (OVA), leading to increasing in

the immune responses. The complex TPCAH-OVA could effectively

encourage the development of influential individual anti-OVA anti-

bodies, improve the activation of CD4+ and CD8+ T cells, increase

the efficiency of lymphocyte proliferation, and promote the secretion

of various cytokines. Table 3 presents a list of the common biomate-

rials used for wound healing and their immune cells' interactions. In

the following, the interaction of most common biomaterials with

immune system is investigated.

4.2 | Chitosan

Chitosan is a deacetylated polysaccharide which has been widely

applied for biomedical applications including wound healing, tissue

engineering, and drug delivery due to its unique physico-chemical

properties such as biodegradability, biocompatibility, and non-toxic-

ity.176–178 In another word, chitosan shows immunomodulatory

responses due to its structural properties, releasing many cytokines

with pro-inflammatory or anti-inflammatory nature.179 Chitosan can

increase the migration of neutrophils, inducing maturation of DCs,

promote NK cells activity, and increase the inflammation response in

situ.149,180 The effect of chitosan on macrophages depends on its

molecular weight and concentration.181 Recently, studies have

reported that chitosan shows different macrophage responses,

depending on the molecular weight.182 Whether these pro-inflamma-

tory or anti-inflammatory responses are good or bad ultimately depends

on the context. The exact difficulty in saying that “chitosan is

proinflammatory” is that “inflammation” covers a very wide range of

TABLE 3 The interactions between immunological cells and biomaterials in wound healing

Cell types Biomaterials Finding References

Neutrophils Chitosan Increased level of IL-8 and neutrophils migration,

controlling the neutrophil functions, and

inflammation by chemical modification of chitosan

(surface charge and hydrophobicity)

[149,150]

Alginate Increased level of neutrophil migration, chemotaxis,

and hexose

[151,152]

Polycaprolactone (PCL) Increased level of IL-2, IL-4, and IgG with increasing

the activity of neutrophils

[153,154]

Hyaluronic acid (HA) Decreased neutrophil migration and induced anti-

inflammatory responses

[97,155]

Macrophages Chitosan Increased pro-inflammatory cytokines such as TNF-α [156,157]

Alginate Modulate inflammatory phase with increasing presence

of macrophages

[158,159]

Calcium alginate Increase macrophages in local and TNF-α secretion [160,161]

Polycaprolactone (PCL) Decreased pro-inflammatory cytokines such as TNF-α,
IL-1, and IL-6, increased anti-inflammatory

responses such as TGF-β and IL-4

[162–164]

Dendritic cells (DCs) Hyaluronic acid (HA) Reduced level of activity of DCs and triggered anti-

inflammatory responses

[165,166]

Polytetrafluoroethylene (PTFE) Increased level of DCs activity and the intensity of

inflammatory responses

[167,168]

Poly(lactic-co-glycolic acid) (PLGA) Increased secretion of IL-4 and pro-inflammatory and

anti-inflammatory cytokines

[169,170]

T-cells Gelatin Enhanced T helper responses through the TLR4

mediated IL-12 secretion

[171,172]

Poly(lactic-co-glycolic acid) (PLGA) Increased APC activity and enhanced activation of

CD8+ T cell

[173,174]

Hyaluronic acid (HA) Activation of TLR and T-cells [66,175]
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cellular and molecular reactions. In fact, depending on the type and

degree of inflammation, these reactions may be beneficial or harm-

ful.183–185 Park et al150 showed that chemical changes in chitosan struc-

ture, such as altering the degree of N-acetylation or changing its

surface charge, could change the inflammatory responses. However, it

has been reported that chitosan with succinylation of amine groups

(ZWC) is hydrophilic polymer and water-soluble at physiological pH

without pro-inflammatory activities.186 Lee et al187 investigated the role

of ZWC to suppress the release of pro-inflammatory cytokines and

decrease the neutrophil activity. These results found ZWC could be a

promising biomaterial for treating diabetic and autoimmune skin

defects. In another study, Sunaina et al188 developed chitosan scaffold

with natural crosslinker (genipin). Their results demonstrated that this

scaffolds caused no significant immune response while still revealed

intrinsic antioxidant and antibacterial properties.

4.3 | Hyaluronic acid

Hyaluronic acid (HA) is a large glycosaminoglycan and an essential

extracellular component of skin that has been widely studied to con-

trol inflammatory responses in the skin.189,190 Kim et al191 revealed

that the presence of HA in contact with immune skin cells enhanced

the expression of post-inflammatory macrophages (M2) and could

essentially control inflammation. This polymer controls the activity of

macrophages, neutrophils, DCs, and T-cell. In the presence of HA, the

activity of DCs reduces and their interaction is coupled with a

decrease in the level of inflammation.165 HA has been applied for

healing of EB or diabetic skins and results found that, HA can control

the inflammatory responses, accelerated wound healing, and can be

used as a immunomodulatory agent carrier.192,193 In general, immuno-

genicity of HA depends on its molecular weight.194,195 High molecular

weight HA has been shown to have anti-inflammatory activity and the

low molecular weight HA or its products can induce inflammation

responses such as activation of macrophages.196 Other studies have

shown that small fragments of HA can increase the expression of a

variety of cytokines and protein production, such as MMP12, macro-

phage inflammatory protein (MIP)1α and 1β, keratinocyte 8, and IL-12

by macrophages.197,198 Recently, Fernanda et al199 evaluated immune

responses of HA gels (low and high molecular weight) cross-linked by

bis(β-isocyanatoethyl) disulfide (BIED). They found that immune

response associated with BIED cross-linked HA hydrogels was directly

related to it molecular weight. Low molecular weight HA hydrogel

increased fibroblast activation over time, which may be due to del-

ayed and progressive responses, while high molecular weight HA gel

decreased fibroblast activation over time, which might be related to

inflammation activity.

4.4 | Gelatin

Gelatin is a natural polymer that is widely used for skin wound healing.

It is an ideal choice for bonding with other biomaterials or a suitable

carrier for the release of biological agents due to its flexibility proper-

ties.200,201 On the other hand, immunomodulation studies showed gela-

tin affects the progression of inflammation with increasing cytokine

release.202 Recently, Zhao et al203 investigated the effects of gelatin on

the skin cancer cell and immunomodulation pathway. The results

showed gelatin could promote immune cell aggregation, suppress the

secretion of TNFα cytokine, and promote the secretion of

proinflammatory cytokines. Recently, Yuanyuan et al204 demonstrated

that supramolecular host gelatin hydrogels containing resveratrol (Res)

and histone 1 (His1) could inhibit inflammation and promote vasculari-

zation of skin burns. This hydrogel inhibits the expression of

proinflammatory factors such as IL6, IL1β, and TNFα, and increases the

expression of TGFβ1 and the platelet endothelial cell adhesion molecule

1 (CD31) leading to promoted wound healing properties.

4.5 | Collagen

Collagen is one of the essential component of ECM and an ideal choice

for wound repair.146 There is a close relationship between the immune

system and collagen surface properties which can control or stimulate the

immune system.205,206 It has been proved that the adhesion of immune

cells to the hydrophilic surface of collagen is lower than hydrophobic bio-

material surfaces, which results in the decreased level of IL-6 and IL-8

secretion. On the other hand, in fibrous scaffolds, the percentage of

porosity and fiber diameter also affect the immune response. Kuyal et

al207 showed that in a collagen-based scaffold, increasing fiber diameter

and porosity percentage increased the M1 to M2 macrophage transition

and promoted the secretion of the angiogenic cytokines.

4.6 | Poly(lactide-co-glycolic acid)

Poly(lactide-co-glycolic acid) (PLGA) is a synthetic polymer with control-

lable degradation capacity that can be effective in damaged tissue

repairing.208 The interactions of PLGA with DCs and T-cells lead to

enhance in the secretion of inflammatory cytokines, increasing antigen-

presenting cell activity and enhance in the activation of T-cells, respec-

tively, in the wound healing process.169 Mooney et al209 evaluated the

role of porous PLGA matrix to repair skin cancer. The results showed

the presence of PLGA in the structure led to increased DCS activity,

generating specific antitumor immunity and healing skin defects.

4.7 | Hybrid biomaterials

The immunomodulation efficiency of biomaterials can be promoted

using a mixture of various natural and synthetic biomaterials. Table 4

presents different composites that control inflammation responses

and immune function in the wound healing process. You et al210

developed an antiinflammatory scaffold based on silver nanoparticles

(Nag) and collagen-chitosan scaffold (CCS). According to the scratch

assay, the NAg-CCS scaffold increased the migration rate of
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fibroblasts. On the other hand, histological results showed the full-

thickness skin lesions were treated with NAg-CCS and CCS, respec-

tively. The results demonstrated NAg-CCS was an antiinflammatory

scaffold, which could potentially facilitate wound healing by controlling

fibroblast migration and macrophage activation.210 Zheng et al211 also

showed wound healing and inflammatory responses of PLGA based

TABLE 4 The role of various composite for control inflammation responses in wound healing

Composites Application Finding References

Collagen-chitosan with silver nanoparticles

(Nag)

Diabetic and burn wounds Fibroblast migration, macrophage activation,

anti-inflammatory responses, antibacterials,

and accelerated wound healing

[210]

HA/PLGA fibrous scaffold Diabetic wound healing Re-epithelialization, collagen deposition,

revascularization, increased CD31

expression, and accelerated wound healing

[212]

Dextran-isocyanatoethyl methacrylate-

ethylamine (DexIEME)

Cutaneous wound Differentiated macrophages to the M2

phenotype, reduction in fibrosis, and

regenerated skin retains a reticulated

endothelial layer

[213]

Decellularized ECM with HA Full thickness burn wounds Promoted neovascularization, anti-

inflammatory, and proregenerative

[214]

Mesoporous silica/ε-poly-L-lysine with

caspase-1 inhibitor

Autoimmune skin defects Inhibition of pro-inflammatory cytokine and

good anti-inflammatory effect

[215]

Glycol chitosan/difunctional polyurethane Diabetic skin wound Antimicrobial activity, re-epithelialization, and

increased secretion of cytokines TGFβ-1
[89]

Nanofibers bioactive glasses/polydopamine

(PDA)

Diabetic wound healing Increasing re-epithelialization and collagen

deposition, decreased inflammatory IL-1β,
TNF-α, and IL-6 markers

[216]

PEG-SH with AgNO3 hydrogel Diabetic wound healing Increasing angiogenic activity, reduced

bacterial infection, and modifying

inflammatory response

[110]

Polycaprolactone (PCL)/collagen with

nanoparticles

Chronic wounds Accelerated collagen deposition, anti-

inflammatory responses, and full wound

closure

[217]

PLGA/cellulose nanocrystals (CNCs) scaffold Diabetic wound healing Accelerated collagen deposition and re-

epithelialization and optimization

inflammatory responses

[211]

Mesoporous silica nanoparticles/

polycaprolactone (PCL) electrospun

fibrous scaffold

Chronic wounds Re-epithelialization, accelerated collagen

deposition, and modifying inflammatory

response

[218]

Glycol chitosan and difunctional

polyurethane

Unhealed diabetic skin wound Forming granulation tissue with sufficient

microvessels and complete re-

epithelialization with increased secretion of

cytokine TGFβ-1

[89]

S-nitrosated keratin (KSNO)/polyurethane

(PU)/gelatin (gel) biocomposite mat

Full-thickness excisional cutaneous

wound

Wound healing without inflammatory

responses with control nitric oxide release

[219]

Chitosan/cellulose wound dressing Chronic wounds Anti-inflammatory activity through the

reduction of tumor necrosis factor-α (TNF-α)
and interleukin-6 (IL-6), biocompatibility

with human fibroblasts

[220]

Nano-titanium oxide/chitosan artificial skin Chronic wounds Steady level of TNF-α and IL-6,Unique

bactericidal effect of nano-TiO2 and

immune-enhancing effect of chitosan

[221]

Polyvinyl alcohol/chitosan composite

hydrogels with Tibetan medicine

Diabetic wounds Reduced inflammatory responses and

improved collagen deposition

[222]

Dibenzaldehyde-grafted poly (ethylene

glycol) (PEGDA)/lauric acid-terminated

chitosan (Ch-LA), and curcumin (cur)-

loaded mesoporous polydopamine

nanoparticles

Chronic wounds Good hemostatic function, prominent

antibacterial ability, strong antiinflammatory

effect, and good wound healing capacity

[223]
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TABLE 5 The role of various bioactive molecules incorporated biomaterials for wound healing

Immunomodulatory type Application technique Finding References

PDGF Encapsulation in electrospun chitosan-poly

ethylene oxide (PEO) scaffold

Promoted fibroblast migration and

accelerated diabetic wound healing

[236]

Epidermal growth factor (EGF) PCL/HA composite emulsion Promoted cell infiltration, regulated

collagen and TGF-β1 gene expression,

and accelerated epidermis regeneration

in burn wounds

[237]

bFGF and VEGF Chemical immobilization on PCL/PEG Promoted diabetic wound healing process,

improved re-epithelialization, and

increased accumulation of collagen and

matrix of keratin

[238]

EGF Encapsulation in electrospun PLGA/gelatin

scaffold

Increased fibroblast proliferation,

expression of collagen types I and III

genes

[239]

VEGF Integrated with chitosan microneedle

patch

Enhanced wound healing efficiency in skin

cancer defects

[240]

IL-2 Conjugation of gel with PCL nanowires Stimulating the suppressor cells and

adjusting immune cells in pemphigus and

EB

[241]

IL-22 Gel injection Induced reepithelialization and tissue

remodeling in diabetic wound skin

[242]

Tumor necrosis factor (TNF-α) Carboxymethylcellulose MN-arrays Decreased epidermal thickness and

enhanced inflammatory responses in

skin cancer defects

[243]

bFGF and VEGF PCL/gelatin co-spun nanofabrics Newly formed skin appendages, lesser

scarring, and lower inflammatory levels

in chronic wounds

[244]

Transforming growth factor (TGF-β) and
IL-10

Incorporated with chitosan-based cryogels Enhanced granulation tissue formation,

neovascularization, and regenerative

epithelialization in burn wounds

[245]

IL-4 Star-shaped poly(ethylene glycol) heparin

hydrogels

Supporting (M2) phenotype of macrophage

and proinflammatory responses in

diabetic wound

[246]

Pyruvate kinase M2 Injection in wound site Promoting angiogenesis, controlled

inflammatory response, and proliferation

phase in cancer defects

[247]

VEGF PLGA nanoparticles Enhance angiogenesis through sustained

VEGF release from biocompatible

matrices in cutaneous wounds

[248]

SiRNA Hyperbranched cationic polysaccharide Promoting diabetic wound healing [249]

Collagen VII gene Highly branched poly(β-aminoester)

hydrogel

Increased synthesis of collagen VII and

accelerated wound healing in EB wounds

[250]

EGF Gelatin-methacryloyl (GelMA)/poly

(3-hydroxybutyrate-co-

3-hydroxyvalerate) (PHBV) hydrogels

Promoted migration and proliferation of

multiple types of cells (keratinocytes,

fibroblasts, and endothelial cells),

enhanced angiogenesis, and diabetic

wound healing

[251]

Basic fibroblast growth factor (bFGF)/

(VEGF)

PCL/gelatin co-spun nanofibers Significantly higher number of newly

formed skin appendages, lesser scarring,

and lower inflammatory levels in newly

formed granulation

[244]

EGF PCL nanofibers functionalized with

6-deoxy-6-amino-β-cyclodextrin
Accelerated wound healing and increased

epidermal cell proliferation

[252]

VEGF GelMA hydrogel Enhanced migration of endothelial cells

and significantly improved quality of

healing in porcine wounds

[253]

(Continues)
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TABLE 5 (Continued)

Immunomodulatory type Application technique Finding References

Proangiogenic gene stromal-derived

factor-1α (SDF-1α)
Collagen-chondroitin sulfate scaffold Promoted VEGF production, angiogenesis,

expression of neurotrophin receptor

p75NGFR, and remodeling of the

basement matrix

[254]

EGF Heparin/sulfated derivatives hyaluronan

(sHA)/collagen-based hydrogels

Enhanced keratinocyte migration, inducing

epithelial tip growth in epithelial and

effective wound dressings

[255]

bFGF Collagen-chitosan composite film modified

with graphene oxide

Repairing full-thickness skin wounds, cell

proliferation and accelerated wound

healing

[256]

EGF EGF-curcumin bandage bioconjugate Enhanced wound closure by increasing

granulation tissue formation, collagen

deposition, and angiogenesis

[257]

F IGURE 5 The delivery of cytokine by PCL nanowires for control the immune system: (a)—(i) schematic of selective cytokine and immune cell
activation, (ii) in vivo PCL nanowire injection at 2, 4, and 6 weeks post-injection, and (iii) in vitro cytokine activation with lymphocytes from pooled
skin draining lymph nodes in 1 nM IL-2 spiked media after 48 h of culture. Reprinted with permission from Ref. 241. 2020. Elsevier. (b) Wound
healing comparison between IL-22, VEGF, and PDGF delivery: (i) The wound region was completely closed by gel injection with IL-22, VEGF and
PDGF treatment groups showing IL-22 treated wounds, (ii) the extent of wound closure over 30 days. Reprinted with permission from Ref. 242
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membranes incorporated with cellulose nanocrystals (CNCs) (PLGA/

CNC). This scaffold accelerated collagen deposition and diabetic

wounds re-epithelialization. Also, the immunohistochemical results

showed the level of inflammatory cells decreased after 10 days.211 In

another research, Shin et al212 developed HA/PLGA core/shell fibrous

scaffold by coaxial electrospinning for diabetic wound healing. Com-

pared with PLGA and control groups, the wound area was substantially

decreased by coverage with HA/PLGA matrices leading to increased re-

epithelialization, improved collagen deposition, and increased CD31

expression to test revascularization. In conclusion, the HA/PLGA matri-

ces could theoretically establish strategies for accelerating diabetic

wound healing and skin regeneration.212

4.8 | Bioactive agent delivery

One of the new strategies for treatment of skin defects is bioactive

molecule release such as growth factors, anti-inflammatory, antigens,

and immunomodulators to control the immune system.224–228

Table 5 presents different bioactive agents and immunomodulators

that control inflammation responses and accelerate wound healing.

Growth factors (GFs) are biologically active polypeptides that regu-

late cell growth, differentiation, proliferation and migration, and con-

trol the immune cell function.229 A wide range of GFs and cytokines,

especially VEGF, epidermal growth factor (EGF), transforming

growth factor-β (TGF-β), platelet derived growth factor (PDGF), and

fibroblast growth factor (FGF) control various phases of the wound

healing process. Another crucial anti-inflammatory factor is cyto-

kines distributed locally and moderate immune system function.129

For example, the release of TGF-β or IL-10 through hydrogels dem-

onstrates their effectiveness in suppressing the maturation of

DCs.230,231 The transition M1 to M2 macrophages phenotype was

also promoted by controlled delivery of IL-4 from biomaterials.232

Cytokines such as IL-4 and IL-10 are essential for skin repair and

regeneration owing to their role in M1 to M2 switching.127 On the

other hand, TGF-β1 is an exciting factor necessary for the early

stages of tissue repair. Depending on the cell type, this molecule

may use either inflammatory or antiinflammatory properties.233 For

instance, although TGF-β1 inhibits lymphocyte activity and prolifera-

tion, it can induce regulatory T-cells simultaneously.234 In other

words, TGF-β3 can be used to accelerate regeneration and prevent

scarring.235

F IGURE 6 (a) Transdermal poly-γ-glutamate MN patch delivery to relieve skin inflammation: (i) Schematic showing the transdermal delivery
using a poly- γ-glutamate MN patch to relieve skin inflammation. (ii) Reduction of AD-like skin lesions in the mice following 8 weeks with MN
treatment. (iii) Downregulation of serum IgE showing negatively regulated Th2-associated Ig production (IgE) by γ-PGA. Reprinted with permission
from Ref. 266. 2020. Elsevier. (b) Wounds treated with CSMNA-VEGF, CSMNA, CS-film, and phosphate buffered saline (PBS) (Control), (i) image of
wounds after 3,5,7 and 9 days, (ii) Hematoxylin and eosin (H&E) staining of wounds after 9 days.240 (c) MN arrays for TNF delivery retracted the
development of psoriasiform dermatitis, (i) H&E staining of cutaneous cross-sections collected on day 5 and (ii) Quantitation of epidermal thickness.
Reprinted with permission from Ref. 243
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TABLE 6 Summary of in vivo studies of cell therapy for wound healing

Wound types Cell source Carrier Findings References

Chronic ulcers wound BM-MSCs Topical fibrin spray Accelerated wound healing [272]

Radiation burn BM-MSCs Treated collagen sponge Wound healing without scar formation [273]

Skin cancer BM.MSCs Injectable hydrogel Isolated tumors and metastatic with anti-

proliferative, proapoptotic, and anti-

angiogenic properties

[274]

Diabetic wounds AMSCs Gelatin sponge Accelerated granulation tissue formation,

and increased reepithelialization and

neovascularization

[275]

Physical full-thickness

wound

hSDMSC Carrageenan or poly (vinyl alcohol)

hydrogel

Increased angiogenesis and accelerated

wound closure

[276]

Burn wounds rMSCs Chitosan-porcine decellularized

small intestinal submucosal (SIS)

matrix supplemented with

recombinant murine EGF

Accelerated angiogenesis and

epithelialization

[277]

Cutaneous wounds hUCMSC Cellulose-based hydrogel Promoted angiogenesis, proliferation,

wound healing, and reduced scar

formation in radiation induced skin

wounds and better than hydrogel contain

EGF

[278]

Diabetic wound hSMSC Chitosan hydrogels Promoted healing and angiogenesis in skin

wounds when delivered in chitosan

hydrogels

[279]

Diabetic wound mASC Oxidized hyaluronic acid (HA), and

poly-ε-lysine hydrogel

Reduced wound healing duration and

enhanced angiogenesis in wounds

[280]

Diabetic wound hGMSC Chitosan/silk hydrogel Promoted cutaneous wound healing,

increased angiogenesis, collagen

deposition, and nerve fiber density

[281]

Physical full-thickness

wound

hUCMSC HydroMatrix hydrogel Prevented α-SMA expression and scar

formation

[282]

Cutaneous wounds MSCs PEG hydrogel Support wound re-epithelialization, possibly

due to its ability to increase PDGF

expression and decrease IL-6 expression

[283]

Cutaneous wounds ADSC Thin layer of acrylic acid Accelerated wound healing through

differentiation and vasculogenesis

[284]

Cutaneous wounds MSCs Collagen scaffolds Vascularized more than control scaffolds [285]

Diabetic wounds MSCs Fibrin spray Accelerated angiogenesis and wound

healing

[286]

Diabetic wounds ADSCs Hybrid injectable hydrogel from

hyperbranched PEG macromer

Promoted angiogenesis and re-

epithelialization

[287]

Diabetic ulcers ADSCs Injectable gelatin microcryogels Enhanced wound healing and generated

intact skin with regeneration after full-

thickness injury

[288]

Diabetic wounds MSCs Gelatin scaffold Enhanced reepithelialization,

antiinflammatory response, and

proangiogenic functions

[289]

Diabetic wounds MSCs Pretreated with salidroside and PEG

hydrogel

Improved the wound closure rate and re-

epithelialization

[290]

EB ABCB5+ MSCs Injection Decreased anti-inflammatory interleukin1,

improvement of migration of endothelial

and epithelial cells

[291]

Diabetic wounds ADSCs Scaffold of human acellular amniotic

membrane (hAAM)

Accelerated wound healing by regulating

inflammation, stimulating vascularization,

and promoting the production of ECM

[292]

Surgically created full-

thickness skin excision

ADSC PLGA nanofibrous Improved wound healing process [293]
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Zamecnil et al241 studied the role of an injectable cytokine deliv-

ery system for local treatment of pemphigus and EB skin defects. In

this study, PCL nanowires were conjugated to IL-2 and assembled into

injectable porous matrices to enable regulatory T-cells resident in tis-

sue (Tregs) (Figure 5a(i)). Injection of this nanomaterial induced long-

term inflammatory responses. After 2, 4, and 6 weeks, nanowire nod-

ules were cryosectioned in OCT and stained with macrophage-

labeling antibody around the nodules (Figure 5a(ii)), and minimal

inflammatory was detected. The results showed the level of CD4+

Tregs for PCL nanowires increased (Figure 5a(iii)) and this hybrid

structure stimulated the suppressor cells, which were necessary to

control immune system function.241 In another study, Kolumam

et al242 compared the wound healing process by simultaneous injec-

tion of IL-22 and growth factors such as VEGF and PDGF. The results

showed IL-22 induced re-epithelialization and tissue remodeling in

diabetic wound skin (Figure 5b(i,ii)).

Antigen delivery is another effective method used to treat skin

diseases and control the function of the immune system. The appro-

priate release of an antigen to the target tissue is a crucial point to

achieve antigen-specific immune tolerance.258,259 In this regard, vari-

ous skin patches,259 microneedle (MNs) patches17 and injectable poly-

mers260 have been applied. One of the most common ways to release

drugs, growth factors and antigens is to use MN patches. MNs are

micron-sized needles made from various materials and shapes, varying

in height from 25 to 2000 μm.261,262 MNs can be applied to the skin

to build micron-sized transport pathways that allow various

pharmaceutical, protein agents, and drug molecules to be distributed

better.19,156,263 This method has been widely used to deliver immuno-

modulatros to treat skin defects and autoimmune diseases.264,265 An

example of a recent study of the release of immunomodulators by

MNs patches is the study by Chen et al.266 They developed dissolv-

able poly-γ-glutamate (γ-PGA) MNs as transdermal immunomodula-

tors for atopic dermatitis (AD) skin diseases. According to Figure 6a(i),

the γ-PGA MNs with a PCL-supporting substrate were mixed. The dis-

solved γ-PGA induced the increased production level of IgE and IgG1

(Th2-associated antibodies) and reduced infiltration of mast cells that

directly stimulated dermal DCs, regulated immune responses and

improved AD pathology. In addition, treatment with γ-PGA MNs upon

8 weeks showed immunomodulatory effects in mice (Figure 6a(ii)) and

had the potential to be a mild, easy and efficient treatment choice for

the management of AD by decreasing the development of

Th2-dependent IgE (Figure 6a(iii)).266 In another study, Chi et al240

evaluated skin patches of MNs/chitosan hydrogel with the delivery of

VEGF in the wound site. The results showed this skin patch promoted

the wound healing in comparison with CS film (Figure 6b). Moreover,

Korkmaz et al243 assessed using tip-loaded dissolvable carboxymeth-

ylcellulose (CMC) MN patches for localized intradermal delivery of

TNF-α in inflammatory cases. This study showed that MN encapsu-

lated anti-TNF-α was biologically active after 5 days compared with

Aldara cream and had a therapeutic impact in an animal model with

skin defects. Reduced epidermal thickness preserved positions com-

pared with untreated control (Figure 6c).

TABLE 6 (Continued)

Wound types Cell source Carrier Findings References

Third-degree burn

wounds

MSCs Arginine-based poly(ester amide)

(UArg-PEA) and chitosan

Promoted re-epithelialization, granulation

tissue formation, vascularization and

induction of reparative, antiinflammatory

interleukin-10, and M2-like macrophages,

the reduction of inflammatory cytokine

TNF-α and M1-like macrophages at late

inflammatory phase of burn wound

healing

[294]

Full-thickness burn

wounds

MSCs Direct injection Promoted wound healing process [295]

Chronic wounds MSCs Injectable hydrogel composed of

sodium alginate (SA) and collagen

type I (Col)

Exhibited low immunogenicity, promoted

granulation formation, enhanced collagen

deposition and angiogenesis, increased

VEGF and TGF-β1, and mitigated

inflammation

[296]

Chronic wounds Adipose-derived

mesenchymal

stem cells

(AMSCs)

Direct injection exosomes derived

from AMSCs (AEXOs)

Alleviated inflammation response, promoted

wound healing, and antiinflammatory

responses

[297]

Diabetic wounds Menstrual blood-

derived

mesenchymal

stem cells

(MenSCs)

Exosomes isolated from MenSCs Enhanced neoangiogenesis through VEGF

release, accelerated re-epithelialization

and less scar formation

[298]

HEYDARI ET AL. 15



4.9 | Immunomodulation using cell delivery

One of the traditional techniques for immunosuppression or immune

system modification is cell therapy.28,89,267 An overview of immuno-

modulatory strategies based on cell delivery is provided in Table 6.

The mesenchymal stem cells (MSCs) are critical cells applied to control

the immune system.268 MSCs, the resident in most adult tissues, are

non-hematopoietic, multipotent stromal precursor cells.269 Initially,

MSCs are found to prevent in vitro mitogen-induced T-cell prolifera-

tion and escape immune surveillance.270 Studies have shown that

MSCs can modulate immune responses in the innate and adaptive

immune systems during chronic inflammation. All of these characteris-

tics make MSCs an attractive candidate to cure chronic inflammatory

diseases.21 Antiinflammatory mediators such as prostaglandin E2

(PGE2), indoleamine 2,3-dioxygenase (IDO), TGF-β, and IL-6 may be

generated by MSCs in skin immunomodulation.271 For the treatment

of EB diseases, recent studies have used direct injection of MSCs.

Structural proteins such as collagen III, VII, and XVII have been

secreted by MSCs, resulting in increased re-epithelization of the

wound areas. Additionally, cytokine preconditioning of MSCs with

TGFβ and TNFα increases in COL7 expression and healing of the EB

wounds.104

Sigen et al287 have developed an injectable hydrogel system

based on ADSCs with hyperbranched multiacrylated poly(ethylene

glycol) macromers (HP-PEGs) and thiolated hyaluronic acid (HA-SH)

to heal diabetic wounds (Figure 7a(i)). Compared with the control

groups receiving no care and wounds treated with cells alone, HP-

PEG/HA-SH/ADSCs considerably accelerated wound healing at days

11 and 21 postwounding by hindering inflammation, encouraging

angiogenesis, and re-epithelialization (Figure 7a(ii,iii)). In another

study, Yang et al289 fabricated a scaffold comprising hypoxia-

preconditioned, allogeneic human MSCs combined with the

beta-adrenergic antagonist timolol, to enhance weakened wound

healing in diabetic mice. Figure 7b(i) shows that in diabetic mice,

MSCs accelerated healing ratio after 7 days and facilitated wound

healing. Additionally, this hybrid structure enhanced re-epithelializa-

tion, anti-inflammatory responses, and proangiogenic functions

(Figure 7b(ii)). In another research study, Zhang et al290 examined the

role of salidroside pretreatment on the therapeutic effect of MSC-

based therapy loaded on PEG hydrogel for diabetic wound healing.

The finding showed that mice transplanted with MSCs increased the

anti-inflammatory responses and wound closure rate relative to

the control group. On the other hand, pretreatment with salidroside

further encouraged the therapeutic effect of MSCs (Figure 7c(i,ii)).

F IGURE 7 Immunomodulation therapy using cell delivery: (a) An injectable HP-PEG-based hydrogel with ADSCs for the healing of diabetic
wounds; (i) Schematic principle of the development of injectable HP-PEG-based hydrogel with ADSCs and incorporation into a humanized
diabetic wound model. (ii) The images of wounds during 21-day in vivo experiments, (iii) wound closure rate quantification (%) over 21-day period.
Reprinted with permission from Ref. 287. 2020. Elsevier. (b) Diabetic wound healing with MSCs, (i) In vivo wounding assay treatment of MSC and
enhanced wound healing in diabetic mice after 7 days, (ii) H&E stained image showing wound edge location and re-epithelialization on day 7 (red
arrows).289 (c) The effect of MSCs and salidroside on diabetic wounds. (i) Image of wound closure of diabetic mice transplanted with salidroside-
pretreated MSCs after 14 days and (ii) the wound closure rate in various time points after wounding. Reprinted with permission from Ref. 290
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5 | CONCLUDING REMARKS

In various skin diseases, such as ulcers diabetes, burn wound, skin can-

cer and autoimmune skin defects, the immune system, and its interac-

tion with tissue environment are known as crucial parameters to

control wound healing. In the wound repair process, ECM plays an

essential role in moderating the immune system and its function. The

interaction between cells and their environment makes the ECM a

dynamic bond for the healthy function of immune cells. Furthermore,

ECM compositions have natural immunomodulatory domains which

interact with receptors on immune cells, providing the regulation of

their function. Based on the importance of immune system elements

and their interaction with ECM, the most appropriate way to treat

autoimmune diseases is to use factors controlling the immune system.

One of the factors that can improve or suppress the immune system

function is biomaterials-based structures. Various natural and syn-

thetic biomaterials can have different immune responses and react

with immune cells in a controlled manner based on their chemical

properties, side groups, mechanical properties, and morphology. For

example, coating carboxylic groups on the biomaterial surface can

alter the immune cell responses and be effective in the healing pro-

cess of chronic wounds. In addition, controlled release of bioactive

molecules such as immunomodulators and cytokines by polymeric skin

patches and MN patches can dramatically alter the immune system

function in autoimmune diseases and skin ulcers. One of the new

methods to suppress or regulate the immune system is the cell deliv-

ery technique. In this method, the skin immune system function and

immune cells signal control by injection of stem cells such as MSCs or

modify biomaterials by loading cells.

According to the recent findings, it can be demonstrated the cru-

cial roles of the immune system in the wound healing process. How-

ever, various common therapies failed because none of them have

fundamentally repaired skin defects while using the immuno-

modulation strategies can accelerate the process of repair of autoim-

mune skin diseases, diabetic wounds, and skin cancer. Perhaps

specific strategies that failed clinical trials in the past may become

successful using immune system-based strategies.
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